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1 Abstract

We describe the continuing development of a Bayesian machine learning methodology for
quantifying the uncertainty in downstream combustion efficiency (CE) in ground flares.
Our methodology utilizes both experimental measurements and data from multi-physics
simulations to produce probabilistic predictions of CE with quantified uncertainty distribu-
tions. The strategy outlined in this paper of learning from both experiments and science-
based models allows us to make model predictions at conditions other than those where
experimental data were collected and for variables that were not measured. Additionally,
our strategy can be extended, with necessary adjustments, to any type of flares at any oper-
ating condition.

We have applied this methodology to a specific case study - the John Zink SKEC steam-
assisted flare at high turndown. The data used for this work were collected at the John Zink
Flare Facility as part of Marathon Petroleum Company’s Flare Consent Decree1. The high
turndown scenario we chose, the SN1 test suite, is particularly compelling as ground flares
typically operate in this standby configuration for a significant portion of their operating
life, only to be fully utilized under process upset scenarios or emergencies. The rapid
decline of the measured CE in over-assist scenarios during the SN1 tests calls for better
understanding of how steam assist affects not only the measured CE but the true (overall)
CE at all wind conditions.

In previous AFRC papers2,3, we presented the fundamentals of our Bayesian machine
learning methodology using the SN1 test data. We define a parameter set X that we will
learn about in the analysis and which affects the quantity of interest, the CE as measured by
a Passive Fourier Transform Infrared (PFTIR) spectrometer. While X may include uncer-
tain model and/or scenario parameters, for this case study, X includes only scenario param-
eters and latent effects (due to physics that are not accounted for in the simulation model
nor in the instrument models). We apply Bayes’ law to compute a multi-dimensional, joint
probability density function that represents the uncertainty and the correlation among the
parameters in X having learned from the measured data and the science-based models. We
then feed these “validated” parameter values forward through the model to produce pos-
terior predictions of PFTIR measurements of CE with quantified uncertainty distributions
that are consistent with the observations.

In the present work, we updated the design of experiments for the surrogate models
and ran the corresponding suite of simulations. We re-defined the instrument model used
to extract data from the simulations to better follow the experimental measurement speci-
fications. We included the three sets of replicate data for each test condition as a separate
experiment and included all three sets in the analysis. Finally, we improved the robustness
of the surrogate models by systematic tests and optimization. Our posterior predictives
from this analysis show the uncertainty in the CE as measured by the PFTIR.
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2 Introduction

Ground flares typically operate in a high-turndown (low fuel flow rate), standby configu-
ration for a significant portion their operating life, being fully utilized only under process
upset scenarios or emergencies. Combustion efficiency (CE), a measure of the amount
of carbon in the fuel being converted to carbon dioxide, is the quantity of interest (QOI)
for such systems. A higher CE results in a lesser amount of unburnt hydrocarbons re-
leased into the atmosphere. The actual/overall CE of a flare in operation (CEoverall) can be
affected by several factors to varying degree including the upstream processes, the control-
ling mechanisms, and/or the prevailing environmental conditions and their influence on the
combustion process. Non-intrusive, remote measurement of flare CE at a point or along a
line-of-sight or in a plane/volume is not a measurement of CEoverall but rather an approx-
imation to it. Such measurements have associated errors that are influenced by the same
factors that affect CEoverall along with errors that stem from the challenges associated with
the consistent usage of the instrument and with the implementation of complex instrument
models for converting what was actually measured (e.g., infrared spectra) to CE1,4. More
often than not, these errors are not easily identified nor quantified.

For our specific application - the John Zink steam-assisted SKEC flare at high turndown
(SN1 data set) - CE was measured using a Passive Fourier Transform Infrared (PFTIR)
spectrometer (CEPFT IR). The data were collected at the John Zink Flare Facility as part of
Marathon Petroleum Company’s Flare Consent Decree (as recorded August 30, 2012) and
reported by Clean Air Engineering1. For PFTIR measurements, CEPFT IR is defined as

CEPFT IR = η =
φCO2

φCO2 +φCO +φHC
(1)

where φi is the integrated concentration of each species (ppm ·m) along a line of sight
through the downstream, post-combustion plume.

In this paper, we extend the use of a data-driven, model-based, probabilistic frame-
work that uses the principles of Bayesian inference to quantify the uncertainty associated
with CEPFT IR measurements in the SN1 flare tests5. The strategy outlined in this paper
of learning from both experiments and science-based models allows us to quantify mea-
surement uncertainty and to make model predictions at conditions other than those where
experimental data were collected and for variables that were not measured. This Bayesian
machine-learning strategy can be extended to any type of flare at any operating condition.

We apply Bayes’ law to solve the inverse problem, a statistical method for describing
the relationship among the set of uncertain input/controlling parameters X we wish to learn
about given some form of observation or evidence of the QOIs (Y )6. Mathematically,
Bayes’ law is defined as

p(X |Y ) ∝ p(X) p(Y |X). (2)

where p(.) is a probability distribution.
To solve the inverse problem, the posterior distribution of X given the observed data

(p(X |Y )), we require priors, p(X), for all X and a likelihood function, p(Y |X). The priors

2



are distributions that describe the current state of knowledge of a parameter set X , which
may include uncertain model and/or scenario parameters and a parameter that accounts for
latent effects (physics that are unaccounted for in the simulation and/or instrument models).

The likelihood, p(Y |X), describes the probability of observing the measured data (Y )
given a specific parameter set X . The likelihood combines the discrepancy/defect between
the science-based model data and the measured variables (Yexpt−Ymodel) with a model (typ-
ically a normal contribution) for the latent effects on the measured variables as shown in
Eq. 3.

p(Y |X) =
1

σ
√

2π
e
− 1

2

[
Yexp−Ymodel

σ

]2

(3)

where σ , the variance in the QOI, can be further decomposed as described in Section 3.5.
The posterior distribution, p(X |Y ), is a multi-dimensional, joint probability density

function (PDF) that describes the correlation among the parameters in the set X . It repre-
sents the updated state of knowledge of X having learned from both the measured data as
well as the science-based model calculations. These “validated” parameter values are then
fed forward through the model to produce posterior predictions of CEPFT IR with quantified
uncertainty distributions that are consistent with the observations.

3 Bayesian Machine Learning Applied to SKEC Flare

The application of Bayes’ law to the SN1 suite of the SKEC flare test series requires that
we complete the following steps:

• Identify and examine the set of test data. Isolate the QOI and study the parameters
that influence the QOI, their trends and corresponding operating ranges.

• Define a set of uncertain parameters X to learn about and create a design of experi-
ments (DOE) in the range of X .

• Identify a science-based model for simulating the flare, set up the simulation with the
appropriate geometry/inputs/model parameters, and execute the DOE.

• Define an instrument model for computing the QOI from simulation outputs and then
use the instrument model to compute the QOI for all simulations in the DOE.

• Create a surrogate model for the QOI as a function of X using the data from the
instrument model.

• Assign prior distributions to X , define the likelihood, including the uncertainty σ ,
Eq. 3, and compute the joint PDF for X using Bayes’ law.

• Compute posterior predictives of the QOI for each measurement point in the data set
and compare with the values measured experimentally.
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3.1 SN1 Experimental Data

The objective of the SN1 test suite with the steam-assisted SKEC flare1 was to understand
the influence of steam assist on CEoverall as approximated by measurements of CEPFT IR
and to define an operating envelope for the flare design that (1) sustains a continuous flame
at high turndown ratios with the least amount of visible smoke and (2) maintains a CEoverall
above the legal limits4,7. If the assist stream flow rate is too low, a state called under-assist,
excessive visible smoke and particulate pollution result. On the other hand, over-assisting
reduces CEoverall .

For the SN1 tests, three flare tips were located equally spaced along a line. The test
data consists of three replicates of six steam flow rates (18 test conditions) resulting in a
set of six different conditions for the net heating value of the combustion zone, NHV cz.
Tulsa natural gas was the prime flaring fuel used in all of the tests, and the fuel exit velocity
at each flare tip was kept relatively constant at 4 f t/s, the lowest possible flow rate to
sustain a flame without any flame lift-off for any assist condition as determined a-priori.
The assist medium, steam, was injected through ports around the fuel inlet, promoting
turbulent mixing and entrainment while also reducing the visible smoke. The steam mass
flow rate was throttled to create different scenarios of NHV cz ranging from∼300 BTU/sc f
(cooling-steam rate) to ∼50 BTU/sc f (over-assist). The CEPFT IR measurement was made
downstream of the three flare tips. Figure 1 illustrates the impact of NHV cz on measured
values of CEPFT IR. The trend curve, based on the mean CEPFT IR measurement for each
test condition, shows the decline in CE with decreasing NHV cz, especially below NHV cz
of 100 BTU/sc f .

Each of these 18 test conditions was run for approximately 20 minutes with data recorded
every minute. The data set includes fuel and steam flow rates, fuel composition, steam ther-
modynamic data, wind speed, wind direction, and the QOI, CEPFT IR. The wind speed data
at different assist conditions are plotted in Fig. 2. Information at time scales smaller than a
minute is unavailable. Also, it is not clear whether any averaging operation was performed
on the wind condition measurements. Subjective information such as data related to visible
smoke production was also not available.

The CEPFT IR data were collected using two PFTIR devices located approximately 180°
from each other in order to have a good view of the flare plume for all possible wind
directions1; see Fig. 3 for a schematic showing the general position of the PFTIR devices
relative to the flare. A good view is one that passes nearly perpendicularly through the
downstream flare plume. Each device was operated by a technician actively pointing the
device’s field of view at a location approximately two flame lengths downstream of the flare
tip, in the general direction of the flame propagation.

Although it was uncertain where the wind information was collected relative to the flare
stacks, careful examination of the SN1 test conditions showed that the wind conditions
(wind speed and direction) varied significantly over the 20-minute span of any given test
and between tests; see Figs. 2 and 3. As a result, the shape, size, and direction of the flame
could have changed quite dramatically within a short period of time, requiring manual
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Fig. 1. Declining trend of CEPFT IR values as
NHV cz decreases. The dot represents the mean
and the error bars represent the range of
reported CEPFT IR values for each test
condition.

Fig. 2. Recorded minute-by-minute wind speed
at different steam mass flow rate conditions for
SN1 test suite1. The error bars show the
deviation of wind speed measurements against
the corresponding replicate averages.

adjustment of the PFTIR to follow the flame. Such manual adjustment resulted in null
records in the minute-by-minute CEPFT IR data.

Fig. 3. Frequency plot of wind direction during
SN1 experiments. The plot is colored by wind
speed. Overlay shows schematic of the PFTIR
(purple and yellow diamonds) placement relative
to the flare stack (black cross, center).

There are a significant number of null
records at the beginning of each 20-minute
window of the experimental runs. This is a
point where the change in steam flow rates
altered the flame shape/length, forcing a
re-adjustment of the PFTIR devices. We
hence rejected all null records in our evalu-
ation.

There are also zero entries for CEPFT IR
at most of the test conditions as noted by
the cluster of data points at zero CE in
Fig. 1; the over-assist scenarios recorded a
relatively higher number of zero measure-
ments. These values are not necessarily
wrong and contain information about the
flare system that should not be ignored. We
attribute these zero values to the fact that
the CEPFT IR measurements are highly sen-
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sitive to the relative position of the PFTIR to the flares and to the location downstream of
the flares at which the PFTIR is aimed. Both of these factors determine what is captured
in the field of view of the device and hence the infrared spectra collected by the objective
lens. In addition, the spectra collected by the PFTIR are integrated/averaged over time to
improve resolution and thus isolate spectral information. This averaging smooths out the
flame fluttering and puffing effects seen in Figs. 4[b] and 5[b] and may contribute to the
measurement of zero values. We include all measured zero values in our analysis.

Fig. 4. Simulation results for run 1, replicate 1 (see Table A.1-1 in the Clean Air report1): [a]
Time-averaged temperature field showing long and rising flame with almost no combustion
occurring below the flare tip. [b] Instantaneous CE field showing fuel stripping below the
horizontal line from the flare tip that results in decreased local CE.

To illustrate how CEPFT IR can be different from CEoverall , consider a test condition
with a large flame (high NHV cz) as shown in Fig. 4. In these simulation results, the loca-
tion two flame lengths from the flare tip, as identified by the averaged temperature field,
is indicated with the crosshair in Fig. 4[b] with the PFTIR field of view at that location
approximated by the circle. Fuel stripping occurs near the flare tip as the wind shear carries
the fuel stream away from the buoyancy-driven reaction zone. These fuel pockets never get
ignited, resulting in degradation of local CE as shown in Fig. 4 [b]. With the visible flame
rising up and away and the PFTIR pointed in the general direction of the circle, CEPFT IR
would be high relative to the true CE, CEoverall , as the significant amount of fuel stripping
would be unaccounted for in the measurement. However, if the PFTIR were pointed in the
direction of the fuel stripping region, an average CE value in the range of 0%-50% would
be measured.

In contrast, in over-assist scenarios (see Fig. 5), the steam exiting the injection ports
around the fuel inlet effectively shrouds the momentum-driven flame in the combustion
zone. The products of incomplete combustion rising from the reaction zone encounter
fast-moving steam and are transported away from the high-temperature zone due to the
local turbulent intensity and mixing. For a human operator tracking the visible flame, the
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flame appears short. In these types of flames, fuel stripping occurs around the flare tip
as the steam injection reduces the temperature below the lower flammability limit for the
mixture, reducing the reaction rate to zero. Partial combustion also results from the relative
velocities of the combustion products and the steam creating a zone of partially oxidised
fuel at the center with nearly complete combustion at the periphery (see Fig. 5[b]). These
combined effects produce a low CEPFT IR measurement in most of the region downstream
of the plume. However, a high CEPFT IR value would be recorded if the PFTIR were aimed
at a location on the periphery of the plume.

Fig. 5. Simulation results for run 6, replicate 1 (see Table A.1-1 in the Clean Air report1): [a]
Time-averaged temperature profile showing how over-assisting results in a short flame. The flame
appears to be contained within a tent above the flare tip. [b] Peripheral region of the rising plume
reaches nearly complete combustion while the interior region has low CE values.

The target region for measuring CE in the downstream plume is hence of great signif-
icance. However, it is not clear from the description of the process how the field of view
of the PFTIR was positioned relative to the three-flare setup. For the higher assist-rate
scenarios where the flame is short, it may be difficult to aim consistently at a location two
flame lengths from all three flare tips. At lower assist rates, these concerns are somewhat
mitigated by the fact that the combustion products from the three flare tips interact further
downstream, resulting in a plume that represents the contributions from all three flare tips.

The PFTIR technology generates integrated species concentration values along its line
of sight for the species shown in Eq. 1. These values are based on the intensity and fre-
quency of the infrared emission spectrum of each species in the flare plume. An instrument
model is used by the operator of the PFTIR to convert the measured signal to a CEPFT IR
measurement. This model includes many assumptions and parameters as partially outlined
in Appendix A of the Clean Air report1. There is insufficient information in the report
to reconstruct the instrument model used to generate CEPFT IR. Additionally, the environ-
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mental effects on the mixing, combustion and diffusion of the flame were not measured
nor characterized completely. These factors also influence the recorded data. Hence, the
reported CEPFT IR values may have errors from various sources that are not accounted for
or are simply too hard to isolate. Nevertheless, by applying Bayesian machine learning to
the SN1 test suite, we can quantify the uncertainty in the CEPFT IR measurements.

3.2 Design of Experiments and LES Simulations

We obtained model data for the Bayes’ analysis using our multi-phase, computational
fluid dynamics code, Arches. Arches is a massively parallel, large eddy simulation (LES)
combustion simulator that solves mass, momentum, energy (including radiative energy)
and scalar transport equations for single and multi-phase combustion applications. With
Arches, we can resolve a wide range of timescales, capturing time-dependent and spatial
information for the system of interest. We used the Rate Controlled Constrained Equilib-
rium combustion model8,9 for this study. With this model, we resolved a global combustion
rate that constrains a chemical equilibrium assumption, allowing for combustion quench-
ing that is crucial for computing CE. We closed the transport equation set with a dynamic
LES turbulence closure that utilizes local turbulent information. We generated the geo-
metric details of the SKEC flare tip using photos, online public information, and flow area
information reported with the PFTIR data.

For flares, both CEoverall and CEPFT IR may be functions of many influencing parameters
including fuel flow rate, fuel composition, assist stream flow rate, wind conditions, and
other scenario parameters. The flare simulations introduce uncertain model parameters
that also influence both QOIs. Before performing a suite of simulations, we must first
define the subset of parameters that we wish to learn about and the parameter space that
we will explore. The instrument models used to obtain CEPFT IR from both the experiments
and the simulations require additional parameters which will be discussed separately in
Sections 3.3 and 3.4.

We chose to focus only on scenario parameters for this analysis as they tend to dominate
downstream CE of flares. For example, Fig. 1 shows the effect of steam feed rate (inversely
proportional to NHV cz) on CEPFT IR. Our parameter set includes:

• Mean steam feed rate, ṁsteam

• Mean crosswind speed, uwind

• Mean crosswind direction, θ wind

In addition to learning about the uncertainty of each of these measured parameters (σmsteam ,
σuwind , σ

θ wind
), we will learn about the uncertainty of CEPFT IR in the analysis that follows.

We then created a two-dimensional design space for the simulations based on our pa-
rameter set. Our design space in the uwind dimension spanned all of the measured wind
conditions in the SN1 test suite, 0 m/s to 8 m/s (17.9 mi/h). In the ṁsteam dimension, the
highest recorded steam flow rate was 0.15 kg/s (1216 lb/hr). We extended the coverage to
0.2 kg/s. The third dimension, wind direction (θ wind), was incorporated into the analysis via
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instrument modeling as described in Section 3.3. We used a uniform-distribution Poisson
disc sampling technique to cover the two-dimensional (uwind and ṁsteam) parameter space
with the least points while including the locations where measured data was available. The
corner locations were placed intentionally to allow for surrogate training to extend to the
edges of the design space. Figure 6 shows the design space for the suite of LES simulations
performed.

Fig. 6. Design points for the SN1 flare simulation suite. Black locations have experimental
measurements, while all locations have LES simulation results associated with them.

We performed an LES simulation for each of the points in the design space with the fuel
feed rate held constant. We also assumed a constant fuel composition. While there were
three flare tips in the experiment and the CEPFT IR measurement was made downstream of
all three plumes, our simulations approximated the three-flare system with a single flare.
We ran each simulation for 4-7 days on 800-1500 cores on a local compute cluster at the
University of Utah to obtain 10s of simulation time. This time frame was long enough to
obtain statistically stationary values of species’ concentrations and temperature. We then
extracted data from each of the simulations as described in the following section.

3.3 PFTIR Instrument Model for LES Simulations

The LES data must be processed in a way that best replicates the PFTIR device. We de-
veloped an instrument model to represent a simplified PFTIR that processes LES data to
arrive at an estimation for CEPFT IR.

As described earlier, two PFTIRs, placed northeast and southwest of the flare stack
respectively1, were used in the SN1 tests (see Fig. 3 for an approximate representation
of the PFTIR locations) to ensure that at least one had a good field of view as per the
guidelines set for the instrument usage. The ideal configuration is to place the PFTIR such
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that its line of sight is perpendicular to the direction of the flame plume. However, due
to the fluctuating nature of the prevailing wind, it was nearly impossible to enforce this
criterion.

The calculation of CEPFT IR using the PFTIR line-of-sight measurement is sensitive to
this relative position of the sensing device and the flame plume. The two PFTIRs were
placed nearly 40m and 60m away from the flare stack when viewed from above. In cylin-
drical coordinates, if we assume the flare stack to be the centre, the two PFTIRs are at
different radii on the ground plane. Figure 7[a] shows this coordinate system when viewed
from above with the flare represented by the black diamond. Because the flame follows the
prevailing wind direction, the position of the PFTIR can be defined as an angle θ relative
to the flame. Therefore, to simulate any wind direction, the PFTIR instrument model can
be placed at either of the two radial distances and at any angle relative to the flame. In our
instrument model, we spanned θwind space by sampling a collection of points around two
circular loci corresponding to the radial distances at which the actual devices were placed.
Figure 7[a] shows a selection of ten such sampling locations for clarity.

Fig. 7. PFTIR instrument model: [a] PFTIR instrument model positions at two radii (green and red
circles) representing loci of all possible locations for the PFTIR instrument model placement, and
thereby the corresponding wind directions. Blue crosses on these circles shows a selection of ten
such sampling locations. [b] Schematic showing the flare stack (black line), the direction of flame
propagation (blue line), the flame tip locii (green arc), and the PFTIR target (red cross). [c]
Collection of 1000 positions for PFTIR instrument model distributed around the flare stack at both
radii with lines of sight from these points through the target location within the computational
domain.

The CEPFT IR measurement is also sensitive to the target location downstream of the
flame. As the flame shape and size are dependent on the reaction rate, turbulent mixing,
and wind speed/direction among other factors, the location at which the PFTIR is aimed
also varies. The visible flame is the envelope of the region where primary combustion
occurs; the PFTIRs were pointed approximately two flame lengths away from the flare tip
as viewed by the operator. To identify a similar location for the simulation results, we
first time-averaged the temperature field and then identified the location of the maximum
temperature in the center plane of the flare. Figure 7[b] shows the schematic of the target
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location selection. Assuming the wind to be moving from the left, the black line represents
the flare stack, the green arc represents the average downstream flame front limit, and
the orange dot represents the location of the maximum average temperature. The radial
distance from the flare tip to the location of highest temperature was then defined as the
average flame length for the case. Temperature gradients at spherical sections further away
from the flare stack traced the general direction of flame travel represented by the blue line
originating from the flare tip. We then fixed a target location for the PFTIR instrument
model that was two flame lengths away from the flare tip along the approximate line of
flame propagation, shown as a red cross in the schematic.

Time averaging while measuring a spectral property flattens the instantaneous fluctua-
tions in the actual property. The experimental measurements are time-averaged over one
minute. To be consistent in our instrument model, we first time-averaged the scalar fields
needed for the model over the last 6s of the 10s simulation window. We sampled 1000
points on the two circles representing the PFTIR locations based on a uniform probability
assumption spread equally between the two radial distances to represent possible wind di-
rections and thereby possible locations of the PFTIRs relative to the flare stack. We then
extracted line-of-sight data from the time-averaged fields along the line originating from
every sampled point to the target location. Every line-of-sight PFTIR ray yields a species
concentration trace for carbon dioxide, carbon monoxide and total unburnt hydrocarbons (i
= CO2, CO, and HC). The integration along the line of sight uses the fuel mixture fraction
to weight the contribution of each local species:

φi =
Σ j f jφ j

Σ j f j
(4)

where i is the species index, j is the line-of-sight position index, and f is the total fuel
mixture fraction, m f uel/mtotal . The integration also followed an inverse distance weighting
in computing the contribution from each point along the line to the integrated quantity as
seen in Eq. 5,

Φi =

(
∑

l

φi|l
rl

)/(
∑

l

1
rl

)
(5)

Here, l represents every point along the line and rl is the distance from the origin to the
location. Following this approach, the closest point to the origin of the ray has the highest
weight in the integration and the farthest point has the least weight.

3.4 Surrogate Model for Combustion Efficiency

Our Bayesian analysis requires fast function evaluations of CEPFT IR as a function of the
parameter set X - ṁsteam,uwind , and θ wind . We created a surrogate model for the QOI,
CEPFT IR, using the CEPFT IR data extracted from the suite of simulations in the design
space.
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We generated the CEPFT IR surrogate model (Y in Bayes’ law, Eq. 2) using a Gaussian
process regression engine developed in-house by co-author Sean Smith. This pythonic
package is used for unsupervised learning given prior functions for the parameter set X .
The surrogate model can be ’trained’ on a set of data and then queried at any location
within the parameter space to yield a model prediction for the QOI.

As discussed above, our instrument model is fully described by the following parame-
ters:

• Mean steam feed rate, ṁsteam, and mean crosswind speed, uwind .

• Relative position of the PFTIR described by :

– Mean crosswind direction θ wind (also the relative angular position of the PFTIR
instrument model).

– Choice of PFTIR as represented by the radial distance of each position.

• Target location for the PFTIR instrument model.

In the current implementation of our instrument model, we fixed the target location for
each case based on the time-averaged temperature field following the heuristic described
in Section 3.3. To further reduce the dimensionality of the problem, we separated the
experimental and simulation data into two sets based on the radial distance of the PFTIR.
Thus, we had two surrogate models, one for each PFTIR, that were functions of three
parameters in X - ṁsteam,uwind, and θ wind . Mathematically, it can be summarized as:

CEPFT IR = YCEIM(ṁsteam,uwind,θ wind) (6)

Fig. 8. Predictions of CEPFT IR from the two
surrogate models (green and blue dots) compared
against the instrument model data set. Red line
shows perfect parity.

We based the two surrogate models on
the Squared Exponential kernel defined us-
ing the individual set of optimized hyper-
parameters. We based the choice of surro-
gate model on the radial distance from the
PFTIR to the flare. We trained the surrogate
models on a randomly chosen set of para-
metric locations that comprised 80% of the
CEPFT IR instrument model data. We tested
the surrogate models on the remaining 20%
of the data by comparing the CEPFT IR pre-
dictions from the surrogate model to the
values obtained from the instrument model.
Figure 8 shows the parity between the sur-
rogate model predictions for both models
(green and blue dots) and the correspond-
ing instrument model values. The linear re-
gression score for the correlation is 0.999,
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showing that the surrogate model is consis-
tent with the instrument model values at all locations within the parameter space.

We also evaluated the sensitivity of the surrogate models to different cases in the LES
suite to ensure that the response surface of the surrogate model was consistent across the
parameter space. We performed this exercise iteratively to optimize the hyperparameters of
the Gaussian process by training the surrogate model on different sets of data representing
each of the test conditions in the LES simulation suite and then testing the surrogate on the
remaining data points. Our goal was to ensure that the predictions from the model followed
the same trend and that no case created a bias in the surrogate model predictions. We used
a histogram of the predictions on an equally spaced grid spanning the entire parameter
space to evaluate the surrogate model at every step. We found that the surrogate model was
sensitive to a few of the cases at the edges of the two-dimensional parameter space. We
added noise to the kernel to mitigate this issue by preventing the covariance matrix from
becoming degenerate.

3.5 Estimating Uncertainty of Combustion Efficiency Measurements

We are now ready to perform a Bayesian analysis to determine the uncertainty in the
CEPFT IR measurements. We are learning about the uncertainties in the measured vari-
ables, σṁsteam

, σuwind , and σ
θ wind

, which we term errors-in-variables10. Additionally, we
learn about σCEPFT IR , the uncertainty in the measurement due to latent effects.

Bayes’ law requires that we define priors for the parameters in X . We choose the priors
to be wide and constant. We define the likelihood function for Bayes’ law (Eq. 2) as:

p(CEPFT IR | ṁsteam,uwind,θ wind) =

1(√
2πσ2

t

)N exp
(
− 1

2σ2
t

Σ
[
YCEexp−YCEIM(X)

]2) (7)

where YCEIM is the surrogate model query (Eq. 6) at the location X = (ṁsteam,uwind,θ wind)
in parameter space. The total overall uncertainty in the posterior distribution of CEPFT IR is
characterized by:

σ
2
t = (σCEPFT IR)

2 +

(
dYCEIM

dṁsteam
∗σṁsteam

)2

+(
dYCEIM

duwind
∗σuwind

)2

+

(
dYCEIM

dθ wind
∗σ

θ wind

)2 (8)

We employed an optimizer algorithm to locate a local mode in the parameter space that
minimizes the discrepancy between the measured CEPFT IR data and YCEIM from the simu-
lation instrument model. We then used this mode to initiate a Monte-Carlo sampler. We
ran a Monte-Carlo simulation of the negative log of the Bayes’ equation using 20 threads
for 1500 iterations to produce converged distributions of the parameters. We rejected the
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first 300 samples to account for burn-in for the sampler, and used the remaining samples
to compute the joint posterior distribution of the uncertain parameters. In order for the
CEPFT IR values from the surrogate model to be bounded within the limits of 0% and 100%
during Monte-Carlo sampling, we transformed the QOI data into a Gaussian space that
is essentially unbounded using an inverse error transform function. After computing the
posterior predictives, we transformed the results back into real linear space.

Fig. 9. Joint posterior distribution from Monte Carlo sampling of four parameters ( σṁsteam
, σuwind ,

σ
θ wind

, and σCEPFT IR) for 1500 iterations with 20 threads.

The joint posterior distribution of the parameter set X in Fig. 9 shows the correlation
between each pair of the parameters. Careful examination of the uncertainty ranges shows
that the overall unaccounted-for errors (σCEPFT IR) have a much larger uncertainty than the
uncertainties in the measured input variables. Also, none of the parameter pairs show a
strong correlation. Marginal posterior distributions shown in the diagonal plots in Fig. 9
show a bimodal trend for the uncertainty in the wind speed measurements while the errors
in the wind direction measurements demonstrate a nearly normal distribution with equal
spread.
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Figure 10 shows the posterior predictives of CEPFT IR having learned from the data. We
generated these data at each recorded data point (ṁsteam,uwind , and θ wind) by first sampling
N times from the joint posterior distribution shown in Fig. 9. We add the sampled uncer-
tainties to the corresponding value of the recorded data point and feed these modified values
forward through the model, YCEIM . We then add in the sampled uncertainty in CEPFT IR. We
repeat this process N times to generate the distribution at each recorded data point shown
in the figure. The modes of these predictions (red dots) reflect the most probable prediction
with the blue violin plots showing the range of the predictions. The decline in CE with
smaller NHV cz, as recorded by the experiments (see Fig. 1), is reflected in the posterior
predictves. Our methodology generates predictions that are consistent with the experimen-
tal measurements while also quantifying the large uncertainty associated with these types
of measurements.

Fig. 10. Distribution of posterior predictives of CEPFT IR (red dot is mode, blue lines are
uncertainty ranges) plotted with the experimental measurements (green cross) against NHV cz.

The distribution of the CEPFT IR posterior predictives at different NHV cz values is pre-
sented in the form of violin plots in Fig. 11. The left half of the split plot at each NHV cz
location shows the distribution of the CEPFT IR predictives due to the latent effects alone.
This plot assumes that the errors in the measurements of the parameter set X are zero, and
therefore the uncertainty in the predictions are due to errors from sources that are unac-
counted for in the analysis. The right half of the split plot shows the distribution of the
CEPFT IR posterior predictives accounting for the uncertainty distribution of the measured
parameters in X (Eq. 8) but discounting the uncertainties induced due to latent effects.
Evaluating the two halves together shows that the latent effects are the largest contributor
to the CEPFT IR measurement uncertainty and that the uncertainties in the measurement of
wind speed, wind direction and steam flow rate combined together produce a much smaller
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uncertainty spread. The trend curve shown in blue passes through the mode (red cross) of
the posterior predictves at each NHV cz location considering the uncertainty in all of the pa-
rameters in X (due to latent effects as well as measurement errors). The violet highlighted
region shows the highest CE ranges of 98%-100%. For comparison, we computed the aver-
age value of CEPFT IR at each test condition (three replicates for each of six NHV cz values)
from approximately 20 minutes of data recorded every minute. These values are shown as
black diamonds at each NHV cz location (three replicates per location). The larger blue dia-
mond represents the average of the three replicate averages. The spread of the mean values
of the CEPFT IR measurements from the replicates is quite large for higher assist rates (lower
NHV cz) and decreases as the steam flow rates move closer to under-assist conditions.

Fig. 11. Split violin plot showing the overall uncertainty in the CEPFT IR predictions due to
unaccounted-for errors on the left, with that due to errors in measured inputs on the right. The
trend curve shows the mode of the posterior predictions of CEPFT IR considering all the
uncertainties (errors from measured parameters and from unaccounted-for sources). Experimental
measurements are plotted as averages of each replicate of the six scenarios (black dots at each
NHV cz). Trend of the experimental measurements of CEPFT IR is shown as blue diamonds. CE
range of 98%-100% is highlighted in violet.

.

4 Conclusions

We applied the method of Bayesian machine learning to the SN1 test data, a series of runs
conducted on the John Zink steam-assisted SKEC flare1. Our objective was to quantify the
uncertainties in the PFTIR-measured CE, CEPFT IR, at various assist rates by identifying
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and categorizing the sources of these uncertainties, thereby generating confidence intervals
that help define the operating envelope of the flare.

By careful evaluation, we identified a set of parameters that directly influence the
CEPFT IR test data spanning six NHV cz conditions. From this set, we selected two pa-
rameters, wind speed and steam flow rate, and performed a suite of 20 LES computations
of the SKEC flare to cover this two-dimensional parameter space. We defined an instru-
ment model that was consistent with the experimental PFTIR data collection process and
extracted line-of-sight scalar data from the LES simulation suite using the model. We used
this CEPFT IR data from the simulations to train a Gaussian process regressor (surrogate
model). Using this surrogate model and the experimental measurements, we computed the
joint posterior distribution of the uncertain parameters. We then computed the posterior
predictive for CEPFT IR at multiple NHV cz locations by sampling from the joint posterior
distribution and feeding the sampled parameter values forward through the model.

We identified the effect of errors in steam flow rate, wind speed, and wind direction on
the CEPFT IR measurements. However, the uncertainty ranges of the predictions indicate
significant contributions to the overall errors from sources that were not considered in this
analysis. The CEPFT IR measurements for any assist rate scenario are dependent on the local
environmental conditions, which influence the choice of the PFTIR sampling location in
the flare plume; this target location uncertainty contributes to the overall error. Human-
induced errors on the PFTIR readings along with the layers of instrument modeling within
the PFTIR readings also contribute to the overall uncertainty in the measurements.

The findings from this study can be extended to predict an overall/actual CE (CEoverall)
with uncertainty, a quantity that consolidates the uncertainties in the measurements and in
the combustion physics parameters.
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