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Abstract
The United States Environmental Protection Agency (EPA) reports that 32% of global methane emis-

sions originate from the oil and gas industry. Current EPA regulations require that oil and gas flares maintain
a minimum heating value, along with other requirements, to ensure a combustion efficiency greater than
96.5%. It is important to understand how various operational factors, such as the heating value, the exit
velocity, and the composition of the flare gas, affect performance. Large-scale flare studies are extremely
costly and time consuming, and important inputs may be overlooked during manual data analysis. Instead,
machine learning (ML) models are more economically advantageous for studying the various flare operat-
ing conditions and the relationships of operating parameters with combustion efficiency. Existing data for
flares are largely available via the United States EPA website and various other reports. The objective of
this work was to create an ML algorithm that can predict flare performance effectively and accurately using
existing steam-assist flare data. To meet the project objective, a supervised ML framework was developed
that employed several methods, such as data cleaning and feature engineering, to improve the predictive
performance of steam-assist flares. Steam-assisted flare data were used for the study due to the significant
role of steam-assist in reducing visible smoke emissions from flares. Steam-assisted flare data were con-
verted to inputs consisting of Reynolds number, momentum flux ratio, steam-to-fuel ratio, dilution ratio,
and net heating value of the combustion zone to predict combustion efficiency. An evaluation of several
different ML models was performed using several metrics such as the mean square error, the mean abso-
lute error, and the coefficient of determination values (R2). The trained ML models were determined to
be trustworthy (i.e., with good predictive performance) for combustion efficiency with R2 values greater
than 0.90 for some ML approaches. Specifically, the linear-based algorithms yielded the lowest quality
models with R2 values less than 0.77 for the training and testing datasets, and the algorithms designed for
non-linear data fitting performed well with the Categorical Boosting model yielding the best performance
with R2 values of over 0.93 for the testing and training datasets. The results demonstrate the utility of
ML methods for predicting flare performance and provide useful tools to guide researchers, government
agencies, and other stakeholders in understanding the major factors affecting flare performance.

Keywords: steam-assist, machine learning, combustion efficiency, experimental flare data, flare perfor-
mance, flare design optimization
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1 Introduction & Motivation

Industrial flares are essential safety devices that relieve pressure in oil and gas fields, process pipelines,
and storage vessels during normal, start-up, shutdown, and malfunction situations [1–3]. Flares vary in
design based on operating parameters such as flow rate, pressure level, composition, etc., and may include
a method of air- or steam-assist to improve combustion characteristics [4, 5]. In 2018, it was found that
there were more than 78,000 flare units within the Permian, Eagle Ford, and Bakken regions in the U.S.
with a collective capacity to flare more than 3,500 million cubic feet of natural gas per day [6]. It is
assumed within industry and government that flares meeting U.S. Environmental Protection Agency (EPA)
design specifications, such as a minimum net heating value, achieve 98% methane destruction efficiency.
However, recent reports, such as the work by Plant et al. [1], determined that flaring releases up to five
times more methane to the atmosphere compared with EPA estimates in the Permian, Eagle Ford and
Bakken regions. They attributed an equivalent efficiency of 91.1% destruction of methane due to unlit
flares and inefficient combustion. Clearly, there is a need to understand the various operating inputs that
affect flare performance in order to improve the effectiveness of these important technologies.

Large-scale flare studies have been conducted over the past several decades, beginning in the 1980s
with the pioneering work by McDaniel and Tichenor [7] and Pohl and Soelberg [8]. It was found that the
heating value and velocity of the flare gas and the amount of steam used for steam-assist flares were the
main factors influencing combustion efficiency. Specifically, the combustion efficiency for steam-assisted
flares decreased only when the flare gas heating value was below 300 British Thermal Units per standard
cubic foot (BTU/scf) [7]. Furthermore, McDaniel and Tichenor found that flaring low-energy gasses at
high exit velocities could also result in reduced combustion efficiencies [7]. These large-scale studies
helped shape the EPA Federal Regulation 40 CFR 63.670 [9], which regulates flaring. Specifically, the
minimum net heating value of the combustion zone (NHVcz) must be greater than 270 BTU/scf, which
helps ensure a destruction efficiency greater than 98%. Large-scale flare studies continued into the early
2010s with Allen and Torres [10]where they confirmed earlier conclusions that the most impactful variables
affecting combustion efficiency are the heating value, the amount of steam used, and the velocity of the flare
gas. The major drawbacks with large-scale flare studies are their high costs and lengthy execution time.
An added concern is that important flare operational parameters may be overlooked during manual data
analysis because of the large volume of data collected (e.g., hundreds of gas composition measurements
as a function of time for each test condition). At the same time, flare data are also oftentimes non-linear
and sparse (e.g., missing some parameters such as smoke or particulate emissions), adding complexity
to traditional data analysis methods. Fortunately, machine learning (ML) tools are built to handle such
datasets and have proven to be useful for identifying the relationships between operating parameters and
flare performance.

Recently, ML models have been applied to existing flare data for predictive modeling of combustion ef-
ficiency (%CE) and the percent opacity (%Opacity) of flares under various operating conditions. Alphones
et al. [11] used Response Surface Modeling (RSM) and Sigmoid models to develop predictive models of
steam- and air-assisted flares based on experimental flare study data from the years 1983 to 2016. The
quadratic RSM and Sigmoid models expressed %CE and %Opacity as a function of operating variables and
yielded R2 > 0.90 and 0.87, respectively. Damodara et al. [12] developed artificial neural networks (ANNs)
based- %CE and %Opacity prediction models using the Levenberg-Marquardt backpropagation algorithm
and demonstrated R2 > 0.95 for both air-assisted and steam-assisted flare data, and showed that the ex-
perimental flare study data from the years 1983 to 2014 were in good agreement with the models’ outputs.
Recently, a zone-based modeling strategy was proposed to predict %CE and %Opacity of steam-assisted
flares by Lou et al. [13]. First, the experimental flare data were divided into two zones on the basis of the
carbon-to-hydrogen ratio. Zone-based predictive models using Random Forests and Catboost algorithms
were developed to demonstrate superior model performance even when extreme values were presented
(i.e., all original data were included in the model development and testing).

The random forest and neural networks algorithms have shown the best performance in predicting the
combustion efficiency of flares thus far. However, few studies have tested other ML models. The objective
of this study was to determine if further improvements in ML methods could be achieved for flare data. The
approach used existing steam-assisted flare data and transformed the most important variables into features
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to predict combustion efficiency. Then, multiple ML algorithms were used with the dataset to determine
the most suitable model for predicting combustion efficiency. Metrics such as the mean square error, the
mean absolute error, and the coefficient of determination (R2) were used to compare between models. To
the authors’ knowledge, different boosting ensemble learning methods have not been tested on existing
flare data. These models have exceptional generalization and regularization capabilities, which may prove
superior for these types of non-linear and sparse datasets. Additionally, they have the ability to handle
skewed distributions, enabling better performance when dealing with abnormal flare conditions (such as
conditions that fall outside of Federal Regulations). The potential combination of boosting algorithms with
feature engineering techniques could yield promising results in accurately predicting combustion efficiency.

The remainder of this paper is organized as follows. Section 2 provides an overview of the methods
used to collect data, create features, and “clean” the data to develop ML models. Section 3 explains the
proposed ML framework for predictive modeling of steam-assisted industrial flare data. It also describes
the steps involved in building an ML model. Section 4 provides the findings and a detailed comparative
analysis of the ML algorithms. Section 5 summarizes the results of the study and provides recommendations
for future research in the field of industrial flare design.

2 Data Collection, Pre-Processing, & Feature Engineering

The data for flares are largely available through the United States EPA website and various other reports.
For the current work, data were first collected from various sources [2, 6, 13–17] that include important
variables in flaring, such as flow rate, exit velocity, composition and heating value of the flare gas, cross
wind speed, and combustion and destruction efficiencies. There are a total of 425 data points between
seven datasets. The raw data variables, such as flare gas exit velocity, were transformed into features, such
as Reynolds number, to be used as input to the ML models. The as-reported variables from the datasets are
listed in Table 1. The input features based on the as-reported data are summarized in Table 2. The main
output variables used to assess flare performance are combustion and destruction removal efficiency (%
CE and % DRE).

Table 1: Raw Data Variables

Variable Description
ρ f Density of flare gas (kg/m3)
ρair Density of air (kg/m3) at standard conditions (P = 1 atm and T = 298 K)
ρair Density of air (kg/m3) at standard conditions (P = 1 atm and T = 298 K)
ρair Density of air (kg/m3) at standard conditions (P = 1 atm and T = 298 K)
v f Exit velocity of the flare gas (m/s)

vair Velocity of cross wind (m/s)
De f f Effective diameter of the flare (m)
µ f Dynamic viscosity of the flare gas (Pa-s), estimated using the major compo-

nents of the flare gas
ṁdiluent Mass flow rate of the diluent (nitrogen or carbon dioxide) (kg/s)
ṁ f uel Mass flow rate of flare gas (kg/s)
ṁsteam Mass flow rate of steam (kg/s)
NHVC Z Net heating value of the combustion zone gas (BTU/scf)

#C Carbon number of hydrocarbon in the flare gas
#H Hydrogen number of hydrocarbon in the flare gas

XCx H y
%Volume of hydrocarbon in the flare gas
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Table 2: Input features used for ML models

Features Equation
Reynolds number, Re

Re =
ρ f v f De f f

µ f

Momentum flux ratio, MFR

M FR=
ρair v2

air

ρ f v2
f

Dilution ratio, D

D =
ṁdiluent

ṁ f uel

Steam ratio, S

S =
ṁsteam

ṁ f uel

Net heating value of the combustion
zone gas, NHVcz

NHVC Z =
NHVV G ∗QV G +Q f ∗ NHVf +Qp ∗ NHVp

QV G + xa ∗Qa + xs ∗Qs +Qp

Carbon-to-hydrogen ratio, CHR

CHR=

∑

#CXCx H y
∑

#HXCx H y

Statistical analysis of the experimental data was conducted and the results are presented in Figure 1.
Specifically, Figure 1 shows the distribution of the experimental steam flare data for both independent
variables (features) and dependent variables (outputs). The box plots show the non-uniform distribution
of the experimental data and the regions of sparsity. Figure 2 depicts the pairwise relationships between
the variables in the steam-assist flare dataset. Each scatter plot in the matrix represents the relationship
between two variables, with one variable plotted on the x-axis and the other variable plotted on the y-
axis. The plots suggest that there are some statistically significant correlations between the independent
variables, but none of them is particularly strong. Therefore, it can be said that there is no multicollinearity
problem with the results of these data. The pairwise distribution plots also reveal outliers present in the
data (i.e., individual points that are far from the main cluster of points).

The scatter plot matrix includes asterisk notation to indicate the significance level of the results. A single
asterisk represents statistical significance at the 0.05 level (2-tailed), indicating a confidence level 95%.
Two asterisks represent significance at the 0.01 level, with a confidence level 99%, while three asterisks
indicate significance at the 0.001 level, with a confidence level of 99.9%, making it the highest level of
significance. As shown in Figure 2, most of the data show little correlation when considered in pairwise
relationships. Some key exceptions include the relationships between CE and DE. In particular, there is a
strong correlation between CE and DE (R> 0.86). This supports the use of CE as a surrogate for DE, which
is valuable, as DE is less frequently reported.

4



D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re

0

0.2M

0.4M

0.6M

0.8M

1M

1.2M

MFR

0

500

1000

1500

2000

CHR

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

NHVcz (BTU/scf)
0

200

400

600

800

1000

1200

1400

1600

S

0

20

40

60

80

100

120

140

CE  (%)

0

0.2

0.4

0.6

0.8

1

DE  (%)

0

0.2

0.4

0.6

0.8

1

D
Re
MFR
CHR
NHVcz (BTU/scf)
S
CE  (%)
DE  (%)

Figure 1: Results of statistical analysis of steam-assist flare data: Distribution of features and performance
data (i.e., box plots)
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3 Methodology

The research methodology was carried out as illustrated in Figure 3. There were several stages in the
framework, which are given as follows. The raw data were collected from various sources. Preprocessing
of the data was the next step to prepare the experimental steam-assist flare data for modeling and analysis
by cleaning, transforming, and structuring. Next, feature engineering (the process of extracting and trans-
forming features or independent variables from experimental data to prepare for modeling and analysis)
was applied. This step requires domain expertise and statistical tools to create features that will help ML al-
gorithms better understand and learn from the data. Feature engineering involves various tasks, including
choosing relevant variables, handling missing values, scaling or normalizing variables, and creating new
variables through transformations or combinations of existing variables. Data cleaning techniques are then
performed to improve the performance results of the ML model. Specifically, in this work the following
steps were taken: null rows were removed, scaling and normalization to the features was conducted, and
variable transformation techniques were adopted. The fully pre-processed data were then employed for
the predictive modeling. The features that were extracted and preprocessed from the raw data were then
used as inputs to the supervised ML algorithms. The primary objective of this step was to improve the
accuracy of ML algorithms by providing high-quality input data.

Figure 3: Machine Learning Model Development Process

Bin discretization is a crucial step in handling non-uniform experimental data for ML model develop-
ment. By dividing the dataset into distinct bins, outliers can be preserved, allowing for the identification
of non-uniform and non-linear features, which is valuable for modeling the flaring process under different
operating conditions. Therefore, by using bin discretization, different models can be built for each bin
according to the flaring process. To assess the performance of ML models, the flare data are split into two
sets: a training dataset and a testing dataset, with a ratio of 85:15 respectively. The data are assigned from
the various sources for steam assist flares, and to prevent any source bias, the data are shuffled before
being split. This ensures that each source contributes to both the model training and testing datasets.

3.1 Machine Learning Algorithms

Machine Learning is a subset of Artificial Intelligence (AI) that incorporates several learning paradigms such
as supervised learning, unsupervised learning, and reinforcement learning. With the emergence of "Big
Data" in many industrial sectors, the adoption of ML algorithms can improve the efficiency of data analysis
and processing for quick decision making [18]. In this work, several algorithms were explored for flare
predictive analytics, which included multiple linear regression (MLR), support vector regression (SVR),
random forests (RF), gradient boosting (GradBoost), extreme gradient boost (XGBoost), and categorical
boost (CatBoost). The key attributes of the different approaches are presented here.
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3.1.1 Multiple Linear Regression

Regression analysis is a widely accepted statistical approach to predict the relationship between one or
more independent variables (i.e. predictors) and the dependent variables (i.e. predicted values). Multiple
linear regression (MLR) is mainly used to understand the change in the dependent variable y when there
is a change in the independent variables p (x1, x2, . . . , xp). MLR can be represented as follows:

yi = f (x i1, x i2, ..., x i p) (1)

yi = β0 + β1 ∗ x i1 + β2 ∗ x i2 + + βk ∗ x i k (2)

where,
βi are the model fit coefficients.

3.1.2 Support Vector Regression

Support vector regression (SVR) is an effective method for both linear and non-linear regression types, and
is commonly used for curve fitting and prediction. In the standard formulation of support vector regression,
Vapnik’s ε-insensitive cost function is employed:

γx(e) = Cmax(0, |e| − ϵ), C > 0.

In which an error e = y − ȳ up to ϵ is not penalized; otherwise, it will incur in a linear penalization. The
"C penalization factor," the "insensitive zone," and the "kernel parameter" are the three hyperparameters
that must be defined in the SVR implementation. In this work, grid search and k-fold cross-validation
procedures were performed to tune these parameters. More details on SVR can be found in the literature
[19].

3.1.3 Random forests

The random forest (RF) algorithm [20] is not only useful in regression analysis, but also performs well
in feature selection. RF integrates several decision trees into an algorithm by including the concept of
ensemble learning. The prediction for a new observation is then obtained by combining the predicted values
derived from each individual tree in the forest. ’The number of trees’, ’the minimum number of observations
at the terminal node’, and ’the number of suitable features to split’ are the three main parameters for RF
algorithms. There are comprehensive mathematical explanations for RFs in the literature [21].

3.1.4 Gradient Boosting Machines

Gradient boosting machines (GBMs) [22] are a type of supervised machine learning model that uses an
ensemble of decision trees to generate an overall prediction D(x). This is expressed mathematically as:

D(x) = dt ree1(x) + dt ree2(x) + · · ·

where each dt reei
(x) represents the prediction of the i th individual decision tree in the ensemble.

There are three important tuning parameters in a GBM model that include the maximum number of trees
’ntree’, the maximum number of interactions between the independent values ’tree depth’ and ’learning rate’
[23]. In this work, the general parameters used in the development of the ’GBM’ model were identified.

3.1.5 Extreme Gradient Boosting

The extreme gradient boost algorithm (XGBoost) [24] also follows the principle of the gradient boost
machine algorithm. While XGBoost requires many parameters, model performance depends highly on the
optimum combination of parameters. The process of the XGBoost algorithm is: consider a dataset with
nm features and an nn number of instances DS =

�

(x i , yi) = i = 1 . . .π, x i ∈ Rnm , y j ∈ R
	

. By reducing the
loss and regularization goal, one should determine which set of functions works best.

L (φ) =
∑

i

l (yi ,φ (x i)) +
∑

k

Ω ( fk) ,

where l denotes the loss function, fk represents the ( k-th tree) to solve the previous equation, while Ω is
a measure of the model’s complexity, this prevents overfitting of the model [25].
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3.1.6 Categorical Boosting

Categorical boosting (CatBoost) is another library of gradient boosting to reduce prediction shift during
model training [26]. The CatBoost technique, when compared with other machine learning algorithms,
requires only a modest amount of data training and can handle a variety of data types, including categorical
features. For more details on the CatBoost algorithm, resources are available in the literature [27].

3.2 Hyperparameter Optimization

Hyperparameter optimization is an important step in the ML model development process. It involves
finding the optimal values for the hyperparameters of the ML algorithms, which can significantly impact
the model performance [28]. Hyperparameters are the parameters of ML algorithms that are set before
model training. The hyperparameter optimization process involves searching over a range of possible
hyperparameters using techniques such as grid search, random search, or Bayesian optimization [29, 30].
The optimal set of hyperparameters is then selected on the basis of the performance of the model on the
validation set. In this work, hyperparameter optimization was implemented using grid search.

3.3 Performance Evaluation Metrics

Various performance evaluation metrics were used to assess the effectiveness of the models developed in
this work. The metrics were the mean squared error (MSE), the mean absolute error (MAE), the coefficient
of determination (R2), and the adjusted R2 values computed for the ML algorithms during the predictive
modeling of each in the test dataset (i.e., the unseen data). The square root of the MSE is the standard
deviation of the differences between the predictions of the model and the experimental values:

MSE=
1
n

n
∑

i=1

(yi − ŷi)
2

The mean absolute error is the average of the errors between the predicted and actual values:

MAE=
1
n

n
∑

i=1

| (yi − ŷi) |

The closer the MSE and MAE values are to 0, the better the model. R2 represents the proportion of variance
of target (dependent variable) that has been explained by the independent variables in the model. (R2)
values range between 0 and 1, where 1 represents a perfect model and 0 a poor model:

R2 = 1−

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ȳ)2

Adjusted R2 is a modified version of R2 that considers the number of predictors (independent variables) in
a given model:

R2
adjusted = 1−

��

1− R2
�

(n− 1)

n− k− 1

�

A higher R2 value shows a good match between the predicted values and actual values, while the adjusted
R2 value allows for comparison between models.
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4 Results & Discussion

The following process was applied to assess the different machine learning models. Bin discretization was
used to address the non-uniform data. Using the NHVcz (BTU/scf) EPA requirement, all steam-assist flare
data were divided into two distinct bins to avoid the removal of outliers. Then, different models were built
for the bins. For each bin, the flare data were further divided into two sets: a training dataset for model
training and a testing dataset for model evaluation, with a ratio of 85:15. The training dataset was divided
into two parts: a training set and a validation set. A K-fold cross-validation (CV) (K = 5) was used. In
5-fold CV, the training set is split into five subsets, of which four subsets are for model training, and the
fifth subset assesses the generalization of the trained ML model using the performance metrics determined
from the model training. This process was repeated five times, each time choosing different subsets for
validation. Grid-search-based hyperparameter tuning was utilized to find optimal hyperparameters that
can generalize the model well. The grid-tuning method searches the grid for each hyperparameter and
evaluates each ML algorithm based on the performance metrics (R2, MAE, etc.). This method finds the
best combination of hyperparameter values for each algorithm using a well-defined grid.

The algorithms implemented included Random Forest, GradBoost, SVR, XGBoost, and Catboost. The
hyperparameters for the Random Forest and GradBoost are related to the number of decision trees and
the learning rate. For SVR, the hyperparameters control the type of kernel, the degree of the polynomial
kernel, and the regularization parameter. For XGBoost, the hyperparameters include the learning rate, the
maximum tree depth, and the number of trees. Lastly, Catboost includes the L2 regularization term and
the learning rate as hyperparameters. By tuning these hyperparameters, better performance is achieved
for each of these models on each bin. Once the best hyperparameters for each ML algorithm were chosen
by the grid search approach and the 5-fold CV, the test dataset (i.e., unseen data) was used to evaluate the
model performance of the best trained model of each algorithm. MSE, MAE, and R2 were calculated to
assess the performance of the ML models.

% CE Models

Tables 3 and 4 provide the MSE, MAE, R2 and adjusted R2 values for the different ML algorithms for
the training and testing datasets for predicting %CE (Table 3) and %DE (Table 4). Figure 4 shows the
comparisons of actual and predicted values for the top six models for %CE and %DE. From the results of
the %CE training dataset, it is found that linear-based models, MLR and SVR, have limited performance
compared with the more advanced algorithms. MLR yielded an R2 of 0.7638 with the training dataset,
indicating around 76% of the variance in the %CE was captured by the model. SVR performed better with
an R2 of 0.8976, but appeared to suffer from overfitting, as the difference between the training and testing
R2 values was substantial. On the other hand, the ensemble-based algorithms, RF, GradBoost, and XGBoost,
demonstrated superior performance. GradBoost and XGBoost yielded very high R2 values of 0.9939 and
0.9974 with the training dataset, respectively, showcasing the ability to fit the data well. Finally, Catboost
outperformed all other algorithms, achieving an of R2 = 1.0 on the training dataset, indicating a perfect
fit to the training dataset.

Similar to the performance of the algorithms in the training dataset, the MLR and SVR methods showed
lower predictive capability compared with the other algorithms with the testing dataset, with testing R2 val-
ues of 0.7267 and 0.6570, respectively. RF yielded relatively good performance for the testing data with an
R2 of 0.8630, demonstrating the ability to generalize and reproduce the “unseen” testing data. GradBoost
and XGBoost also performed well, with R2 values of 0.8931 and 0.9170, respectively, demonstrating strong
predictive capabilities. However, Catboost remained the top performer with the testing dataset, with an R2

value of 0.9344. Catboost also exhibited very low MAE and MSE, indicating precise predictions. Overall,
the ensemble-based algorithms, especially Catboost, proved to be highly effective in predicting the %CE
on unseen steam-assist flare data.

% DE Models

From the results presented in Table 4, it is observed that the performance patterns for predicting %DE were
similar to the %CE model results. This was expected given the strong correlation between %CE and %DE
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observed in the data previously (Figure 2). The linear-based models, MLR and SVR, exhibited moderate
performance, with SVR outperforming MLR. RF performed well, with high R2 values of 0.9301 and 0.9073
on the training and testing datasets, respectively. GradBoost did not reach the same performance level as RF.
XGBoost showed strong performance with an R2 of 0.9774 in the training dataset and a slightly lower value
for the testing dataset. As seen with %CE, Catboost was the best performer, with an almost perfect R2 value
of 0.9995 on the training dataset and a highly accurate R2 value of 0.8977 on the testing dataset. Catboost
also yielded the lowest MAE and MSE with both datasets indicating exceptional predictive capabilities.
Overall, the ensemble-based algorithms, especially Catboost and XGBoost, proved to be highly effective in
predicting %DE.

Table 3: Performance Summary of Different % CE Models

Algorithms R2 Adjusted R2 MAE MSE

% CE (Training dataset)

MLR 0.7638 0.7594 3.5622 30.2776
SVR 0.8976 0.8957 1.7149 13.1282
RF 0.9723 0.9718 1.0713 3.5481

GradBoost 0.9939 0.9938 0.5133 0.7716
XGBoost 0.9974 0.9973 0.4304 0.3374
CatBoost 1.0000 1.0000 0.0038 0.0000

% CE (Testing dataset)

MLR 0.767 0.6903 2.8048 19.4209
SVR 0.6570 0.6113 2.6237 24.3745
RF 0.8630 0.8447 2.0470 9.7389

GradBoost 0.8931 0.8788 1.6658 7.5969
XGBoost 0.9170 0.9059 1.5728 5.8980
CatBoost 0.9344 0.9257 1.3697 4.6619

Table 4: Performance Summary of Different % DE Models

Algorithms R2 Adjusted R2 MAE MSE

% DE (Training dataset)

MLR 0.6904 0.6846 4.5067 62.1064
SVR 0.8294 0.8262 2.6061 34.2149
RF 0.9301 0.9288 2.0233 14.0126

GradBoost 0.8365 0.8334 3.5791 32.7992
XGBoost 0.9774 0.9769 1.3532 4.5425
CatBoost 0.9995 0.9995 0.2366 0.1013

% DE (Testing dataset)

MLR 0.7217 0.6846 4.8265 50.8419
SVR 0.8956 0.8816 2.9388 19.0827
RF 0.9073 0.8949 2.9479 16.9461

GradBoost 0.8106 0.7853 4.4022 34.6090
XGBoost 0.8339 0.8118 3.5141 30.3462
CatBoost 0.8977 0.8841 2.8224 18.6901
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(a) Catboost (b) XGBoost

(c) Gradient Boosting (d) Random Forest

(e) CatBoost (f) SVR

Figure 4: Results for %CE (a) – (c) and %DE (d) – (f) for the top performing ML methods. The dot symbols
visually compare the model’s predictions to the experimental data. The dashed line is a reference line for
perfect prediction, where the predicted values exactly match the experimental values.
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5 Conclusion & Future Work

In this work, a machine learning framework was developed that employed several methods, such as data
preprocessing, cleaning, and feature engineering, to improve the predictive performance of steam-assist
flares. The ML framework consisted of a set of supervised ML algorithms, which included multiple lin-
ear regression, support vector regression, random forests, gradient boosting, extreme gradient boost, and
categorical boost methods. The results showed some of the ML models had excellent generalization and
regularization capabilities, which may prove superior to other ML methods for this type of non-linear and
sparse dataset. Several ensemble-based algorithms, especially CatBoost, proved to be highly effective in
predicting combustion and destruction removal efficiency (% CE and % DRE) in unseen steam-assist flare
data. These models can be used to improve flare design and performance, e.g., via integration into the
design tools.
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